

Data-Aware Scheduling of Legacy Kernels
on Heterogeneous Platforms with Distributed Memory

Michela Becchi, Surendra Byna, Srihari Cadambi and Srimat Chakradhar
NEC Laboratories America, Inc.

4 Independence Way, Princeton NJ 08540
{mbecchi, sbyna, cadambi, chak}@nec-labs.com

ABSTRACT
In this paper, we describe a runtime to automatically enhance the
performance of applications running on heterogeneous platforms
consisting of a multi-core (CPU) and a throughput-oriented many-
core (GPU). The CPU and GPU are connected by a non-coherent
interconnect such as PCI-E, and as such do not have shared
memory. Heterogeneous platforms available today such as [9] are
of this type. Our goal is to enable the programmer to seamlessly
use such a system without rewriting the application and with
minimal knowledge of the underlying architectural details.
Assuming that applications perform function calls to
computational kernels with available CPU and GPU
implementations, our runtime achieves this goal by automatically
scheduling the kernels and managing data placement. In
particular, it intercepts function calls to well-known
computational kernels and schedules them on CPU or GPU based
on their argument size and location. To improve performance, it
defers all data transfers between the CPU and the GPU until
necessary. By managing data placement transparently to the
programmer, it provides a unified memory view despite the
underlying separate memory sub-systems.

We experimentally evaluate our runtime on a heterogeneous
platform consisting of a 2.5GHz quad-core Xeon CPU and an
NVIDIA C870 GPU. Given array sorting, parallel reduction,
dense and sparse matrix operations and ranking as computational
kernels, we use our runtime to automatically retarget SSI [25], K-
means [32] and two synthetic applications to the above platform
with no code changes. We find that, in most cases, performance
improves if the computation is moved to the data, and not vice-
versa. For instance, even if a particular instance of a kernel is
slower on the GPU than on the CPU, the overall application may
be faster if the kernel is scheduled on the GPU anyway, especially
if the kernel data is already located on the GPU memory due to
prior decisions. Our results show that data-aware CPU/GPU
scheduling improves performance by up to 25% over the best
data-agnostic scheduling on the same platform.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – run-time
environments.

General Terms
Performance, Design, Experimentation.

Keywords
Heterogeneous platforms, multi-core processors, accelerators,
distributed memory, runtime.

1. INTRODUCTION
Heterogeneous platforms consist of one or more multi-core
general-purpose CPUs and one or more throughput-oriented
many-core processors (for example, GPUs). Driven by many
emerging data-parallel applications and by the need for higher
performance, server vendors are beginning to rapidly
commercialize these platforms [9], a trend that is expected to
continue.

The most straightforward (and currently available)
configuration that allows fast time-to-market is to have the many-
core processor on an add-on card that is connected to the system
via a non-coherent interconnect such as PCI Express. This has
two implications. First, the CPU processing and its memory sub-
system is completely separated from the many-core processor
(GPU) and its memory sub-system, i.e., the two memory sub-
systems are not coherent and there is no shared memory. This
makes programming difficult since the programmer has to
manage the data that is manipulated by the CPU as well as the
GPU. Second, with current PCI-E bandwidths, large data transfers
between the two processing sub-systems can at times overwhelm
any speedup achieved by the many-core when the processing
alone is taken into consideration.

Such “loosely-coupled” distributed memory heterogeneous
systems do not present the programmer with a unified view of the
memory and compute elements. Today, applications that require
acceleration from heterogeneous systems must be carefully
profiled to discover data-parallel portions (“kernels”) that could
benefit from a many-core GPU. Once GPU custom
implementations for those kernels are available, the application
developer must explicitly schedule not only the kernel
computations but also the required data transfers.

Ideally, a heterogeneous system should enable any legacy
code written for homogeneous systems to run faster, in a way that
is transparent to the programmer. GPU libraries for commonly
available kernels (such as linear algebra for example) are
necessary in order to enable this, but are not enough to allow
complete transparency. A runtime that schedules computations as
well as data transfers in order to maximize performance is
required.

In this paper, we propose such a runtime. As a significant
difference from past work [3], our runtime is cognizant of data
transfer overheads and dynamically schedules operations taking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06...$10.00.

82

into account not only the predicted processing performance, but
also data transfers. For instance, suppose an application has three
candidate kernels with both CPU and GPU implementations.
Assume that during a certain execution path, the first kernel is
estimated to be much faster, but the second and third much slower
on the GPU (based, say on the sizes of their parameters). Given
this information, a data-agnostic scheduler is likely to run the first
kernel on the GPU, transfer data back and run the remaining two
kernels on the CPU. However if the first kernel produces a large
amount of data that is consumed by the second kernel, a better
schedule may be to run the second kernel also on the GPU and
avoid the intermediate data transfer. With legacy code, the system
is unaware what will follow the first kernel. After running the first
kernel on the GPU, our runtime postpones data transfers back to
the CPU until necessary. This way, when the second kernel is
encountered, it can make a more informed decision taking into
account the data transfer overhead, as well as the estimated
performance. Although the GPU is slower in processing the
second kernel compared to the CPU, running the kernel on the
GPU could still result in an overall speedup. Our runtime analyzes
these situations using simple, history-based models to predict
processing as well as data transfer time, and uses these to guide
the scheduling policy. It intercepts calls to candidate kernels,
examines their arguments, and uses historical information and
prior decisions to devise a schedule on-the-fly. Once a decision is
reached for a kernel, the runtime invokes its CPU or GPU
implementation transparently to the user.

One basic objective of our runtime is to target legacy code.
In other words, we do not require source code modifications, but
assume that the application performs function calls to well known
kernels for which implementations targeting both the CPU and
GPU are available. Our runtime’s invocation happens by function
call interception. This mechanism alone would lead to data
coherence problems when accesses performed outside function
calls target data residing on the GPU. In [7], we discuss operating
system modifications to avoid this problem. In particular, the
proposed design adds synchronization points within the page fault
handler; at each synchronization point our runtime’s API is
invoked. As an alternative, it is possible to add synchronization
points in the application via minimal source-level annotation (we
discuss this in Section 4). Note that our goal is to propose a
runtime, therefore we do not force the user to code a new
application (or recode an existing one) according to specific
primitives or frameworks. Therefore, our work fundamentally
differs from previous efforts that propose programming models
[1][5].

In summary, our contribution could be viewed as a runtime
for a heterogeneous platform that provides a unified memory and
compute view to the programmer despite the underlying platform
being composed of two separate CPU and GPU, each one having
its own memory sub-system. Such a view is enabled by
automatically scheduling kernels on the compute units while
simultaneously optimizing data placement on the two memories.
The goal of the runtime is to maximize the overall application
performance without requiring application rewriting. In [7] we
discuss how the design can be generalized to the case where
multiple GPUs or accelerators are connected to the CPU, and to
that where CPU and GPU share (pinned) memory regions residing
on the CPU.

The rest of the document is organized as follows. In Section
2, we overview closely related work. In Section 3, we present a

motivational example that illustrates the benefits of data-aware
scheduling. In Section 4, we detail the design, implementation
and operation of our proposed runtime. In Section 5, we present
an experimental evaluation on some real and synthetic
applications. We conclude in Section 6.

2. RELATED WORK
Various programming languages and libraries have been
introduced by multi-core CPU and many-core GPU vendors to
utilize their computing power. Nvidia’s CUDA [8], AMD’s
Brook+ [10], Intel’s TBB [11] and Ct [12] provide programming
interfaces to better utilize the underlying hardware. These
interfaces, while making programming easier, target specific
GPUs or CPUs and not a heterogeneous platform containing both.
Similarly, solutions such as Microsoft Accelerator [13],
Rapidmind [14], and Google’s Peakstream [15] only target GPUs.
Programming models targeting heterogeneous and distributed
memory systems are presented in [1] and [5]. However,
programming models and languages can be used either to write
new applications, or to rewrite existing ones. In contrast, this
proposal aims to enable legacy applications on heterogeneous
platforms without requiring source code modifications.

PGI Accelerator [16], CAPS HMPP workbench [17], and
HPC Project’s Par4All [18] developed compilers to generate
CUDA code for data parallel portions, especially loops. These
tools use compiler level information to decide whether to run a
code segment on CPUs or GPUs, but do not take the cost of data
transfers into account. Compiler solutions also cannot make
scheduling decisions that are best made at runtime. Our runtime
uses parameters such as data size and data locality and decides
when to schedule computations as well as data transfers.

Multicore-CUDA (MCUDA) [19] and Ocelot [20] translate
CUDA code to run on multi-core processors. Liao et al [21]
propose a similar translation of Brook-like code into
multithreaded CPU code. The goal of these approaches is to
provide a way to develop code for both CPUs and GPUs, but
scheduling them on the hardware is left to the programmers.

OpenCL [22] attempts to provide a common programming
interface for multi-core and many-core platforms. However, the
programmer must decide the mapping of the kernels to the
processing elements. IBM’s OpenMP for Cell [23] and Intel’s
Merge framework [24] are also capable of running code on both
CPUs and GPUs, but the mapping is not automatic (and involves
code modifications). Harmony [3] proposes a runtime to schedule
kernels either on CPU or on GPU based on estimated kernel
performance using an API. Qilin [4] proposes an API with
automatic and adaptive mapping support, which reduces the
decision burden on programmers. However, Qilin’s mapping is
based on a curve fitting model to split computation on CPU and
GPU. Neither Harmony nor Qilin consider the data transfer
overhead, especially for legacy code. StarPU’s unified runtime
system [34][35] proposes implementing CPU-GPU memory
coherence using the MSI protocol. However, it requires
programmers to use a new API proposed by the system.

Data-aware scheduling strategies exist in cluster and
distributed computing [28][29][30]. However, these techniques
are used in scheduling jobs to fit data in disks and to reduce data
transfers among cluster and grid computing nodes. We focus on a
node within a cluster.

83

Table 1: Processing and data transfer times for SSI classification. For each input data size, the schedule resulting in the best
performance is highlighted.

Kernel Location
(Schedule)

Kernel Processing Time Number of
simultaneous
queries (Q) sgemm topk_rank sgemm topk_rank Total

Data
Transfer

Time

Overall
Speed

CPU CPU 1.25s 0.06s 1.31s - 41.12 ms/query
GPU CPU 0.08s 0.06s 0.14s 0.11s 7.91 ms/query

32

GPU GPU 0.08s 0.31s 0.39s 0.06 ms 12.14 ms/query
CPU CPU 2.07s 0.12s 2.19s - 34.20 ms/query
GPU CPU 0.15s 0.12s 0.27s 0.23s 7.85 ms/query

64

GPU GPU 0.15s 0.33s 0.48s 0.09 ms 7.51 ms/query
CPU CPU 2.88s 0.18s 3.06s - 31.84 ms/query
GPU CPU 0.23s 0.18s 0.41s 0.34s 7.83 ms/query

96

GPU GPU 0.23s 0.36s 0.59s 0.12 ms 6.13 ms/query

Finally, CUBA [6] proposes an architectural model where
co-processors are encapsulated as function calls, as well as
mechanisms to allow data physically residing on accelerator
memory to be cached on CPU. CUBA assumes that the CPU has
access to the co-processor memory mapped registers and to the
co-processor local memory (which is not the case of the
architecture we are considering). Moreover, the CUBA proposal
discusses hardware changes (specifically, changes to the memory
controller) whereas we operate at the runtime level.

3. MOTIVATIONAL EXAMPLE
In this section, we motivate the need for data-aware scheduling on
heterogeneous platforms with a real application. The application
we use is Supervised Semantic Indexing (SSI) classification [25].

SSI is an algorithm used to semantically search large
document databases. It ranks the documents based on their
semantic similarity to text-based queries. Each document and
query is represented by a vector, with each vector element
corresponding to a word. Since documents and queries only
contain a small fraction of possible words, each vector is sparse
and has as many elements as the dictionary’s size. Each vector
element is the product of Term Frequency (TF) and Inverse
Document Frequency (IDF) of the word that it corresponds to. TF
is the number of times a word occurs in the document and IDF is
the reciprocal of the number of documents that contain the word
(thus IDF reduces the importance of commonly occurring words).
Before classification can take place, the system must be trained.
During this training process, a weight matrix is generated. By
multiplying a query or document vector with the weight matrix,
we obtain a smaller dense vector which contains relevant
information for document-query classification. Each dense
document and query vector is C elements long, where C is the
number of concepts [25]. The classification process multiplies the
query vector with all document vectors and identifies documents
whose vectors produced the top k results.

The SSI classification process has two compute-intensive
kernels which are good candidates for the many-core GPU. The
first (sgemm) is the multiplication of the query vectors with all
document vectors, essentially a dense matrix-matrix
multiplication. With D documents in the database and Q
simultaneous queries, the document matrix size is DxC and the
query matrix size is QxC. The second kernel (topk_rank) must

select, for each query vector, the top k best classification
documents, that is, it selects the top k elements from the products
of query vectors with document vectors. With millions of
documents to search for each query, these two kernels take up
99% of the SSI execution time.

We motivate data-aware scheduling with three example runs
of SSI classification. Our data set contains 1.6M documents and
128 conceptual categories. For each run, we vary the number of
simultaneous queries performed (we consider 32, 64 and 96
queries). Each query requires the identification of 64 top
classification documents from the document database. The
document database contains documents selected from the
Wikipedia [25]. For matrix multiplication, we use the Intel Math
Kernel Library [26] on the CPU and the CUBLAS Library
implementation of the sgemm function [27] on the GPU.

Table 1 shows the processing and data transfer times for
three possible schedules of the two kernels used in SSI
classification, as well as the overall throughput. The first schedule
assumes both kernels are run on the CPU with no data transfer
required. In the second schedule, the kernels are profiled and run
on the computational element (either CPU or GPU) that has the
smaller kernel processing time. In the third schedule, all kernels
are run on GPU. However, data transfers are not performed before
and after every kernel invocation, but only when required. In
other words, the topk_rank kernel will be able to use the results of
the previous call to sgemm without transferring them from the
CPU.

As can be observed, dense matrix multiplication is much
faster on GPU (by 12-15X), whereas topk_rank is slower on the
GPU. However, as the number of queries increases, the speed of
topk_rank on the GPU improves.

The poor performance of sgemm on the CPU affects the first
schedule making it the worst for all the considered data sets.
When the number of queries is small (32), the second schedule is
preferable. As the number of queries increases, the third schedule
tends to provide best performance. In particular, the throughputs
achieved with the second and third schedules are comparable
when 64 queries are processed in parallel. However, when the
data set size increases to 96 queries, then the third schedule
performs substantially better (the throughput achieved increases
by 20%).

84

Interestingly, what makes the third schedule preferable for
large input sets is not the processing time, but the savings in terms
of data transfer time. In fact, the sgemm call produces a matrix of
size 1.6MxQ floats, which normally is transferred back to the
CPU. If the runtime recognizes this and schedules the second
kernel on the GPU even though the GPU is slower, the
performance shown in the table is achieved. Note that the GPU-
GPU schedule would never be preferable if data transfers were
performed before and after each kernel invocation, such as would
be the case if the runtime were handling legacy code, and was
data-agnostic.

The key take-away is the following. First, the best schedule
depends on data set size, determined at runtime for legacy
kernels. Second, execution time alone is insufficient to achieve an
optimal schedule. In particular, once a kernel executes on the
GPU, the runtime should defer transferring back the data to the
CPU until access to that data is performed. When subsequent
kernels are invoked, the runtime should determine if it is
worthwhile transferring back the data based on its predicted data
transfer overhead, as well as the processing times of the kernel to
run.

4. THE PROPOSED RUNTIME
In this section, we describe our runtime system design.

4.1 Overview of our Runtime
The primary goal of the runtime is to dynamically schedule
computational kernels onto heterogeneous computing resources,
namely the CPU and the GPU, in order to minimize the execution
time of the overall application. To this end, the runtime aims to
minimize kernel execution time as well as data transfer
overheads. In effect, it hides the compute- and memory-
heterogeneity from the programmer.

As mentioned above, the runtime operates at the granularity
of a function call. The application runs by default on the CPU and
may perform calls to well known kernels for which CPU or GPU
implementations are provided. When one of these kernels is
invoked, the runtime must determine the implementation to
instantiate. This decision depends on two factors: kernel
execution time and data transfer time. In turn, these factors
depend on the size of the function call parameters and the location
of the corresponding data. GPU kernel implementations assume
that their parameters reside on the GPU memory: it is the
responsibility of the runtime to hide this fact to the calling
application, and to maintain a mapping between data structures
residing on CPU and on GPU memories. As we will see, data is
not transferred to the CPU memory at the end of each GPU kernel
invocation, but only when required.

Note that each computational kernel – whether it targets the
CPU or GPU – is essentially a “black box” to the runtime: the
only visible data transfers which can be optimized by the runtime
pertain to the function arguments, and not to the data structures
within the kernel itself. In other words, the runtime aims at
minimizing CPU-GPU data transfers; optimizing data transfers at
different level of the GPU memory hierarchy is outside the scope
of this work.

Figure 1 depicts our proposed runtime. It consists of two
modules: function call handler and memory access handler. The
function call handler intercepts kernel calls, determines which
kernel implementations (CPU or GPU) to instantiate, and invokes
them. The memory access handler maintains a mapping between
CPU and GPU data structures, and handles data transfers and
synchronizations. The services offered by the memory access
handler are available to the function call handler through an API.

We now give more details on the two modules.

4.2 Function Call Handler
The function call handler intercepts predefined kernel calls and
invokes proper library implementations depending on the call
parameters and the data location. For each kernel fn having
(read-only) input parameters in_pars and (write-only) output
parameters out_pars, the module contains a function whose
structure is exemplified in the pseudo-code below (void is used
for illustration only).

The mam object (at lines 4, 7, 9, 11 and 13) represents the
interface offered by the memory access module, that we will
describe in more detail in the next section.

(1) void fn(in_pars, *out_pars){
(2) /* determine the best target for fn */
(3) if(eval_loc(&fn,in_pars,out_pars)==CPU){
(4) for (p in in_pars) mam->sync(p);
(5) /* schedule on CPU */
(6) cpu_fn(in_pars,out_pars);
(7) for (p in out_pars) mam->set_cpu(p);
(8) }else{
(9) in_pars_d = out_pars_d = Ø;
(10) for (p in in_pars)
(11) in_pars_d U= mam->get(p,true);
(12) for (p in out_pars)
(13) out_pars_d U= mam->get(p,false);
(14) /* schedule on GPU */
(15) gpu_fn(in_pars_d, &out_pars_d);
(16) for (p in out_pars) mam->set(p);
(17) }
(18) }

The cpu_fn and gpu_fn routines (at line 6 and 15,

respectively) represent the CPU and GPU implementation of the
intercepted kernel. Under GNU/Linux based operating systems,
the function call handler can be dynamically linked to the
application through the LD_PRELOAD directive. Pointers to
cpu_fn and gpu_fn are obtained using the combination of
dlopen/dlsym directives (the pointer to cpu_fn can also be
obtained simply using dlsym and setting the handle to
RTLD_NEXT).

The eval_loc routine (line 3) is also defined within the
function call handler, and determines the best target for the
intercepted function call. This decision is made by estimating the
data transfer time of the input parameters and the kernel execution
time on both CPU and GPU. We reiterate that the runtime

CALL
INTERCEPTION

DECISION POLICY

DATA SYNC +
CALL REDIRECTION

FUNCTION CALL HANDLER

CPU-GPU
MEMORY MAPPING

CPU-GPU DATA
SYNCHRONIZATION

MEMORY ACCESS HANDLER

GPU MEMORY
FULLNESS HANDLING

location()

sync()
get()
set()

set_cpu()

Figure 1: Block diagram of our runtime system.

85

transfers (input) data only when they do not reside on the memory
of the executing processor. eval_loc queries the memory
access module for the location of each input parameter, and
estimates the data transfer time based on the parameter size. In
case of GPU execution, eval_loc considers the size and the
location of the output parameters to determine whether the GPU
has enough free memory to allocate them. In order to estimate the
kernel execution time on both CPU and GPU, eval_loc uses
profiling information. In particular, for all considered kernels, we
measured the CPU and GPU execution time for different input
parameters and we obtained the input size/execution time
characteristic. At runtime, the eval_loc routine uses the actual
input parameters to locate the operation point.

If the eval_loc routine establishes that the execution
must happen on the CPU (lines 3-7), then the cpu_fn kernel
must be invoked. Before its invocation, all input parameters must
be synchronized (line 4). As we will see, mam->sync will have
no effect if the CPU has an up-to-date copy of the data. After
kernel execution, the output parameters are marked as residing on
the CPU (line 7). This operation does not imply any data transfer.

If the kernel execution must take place on the GPU (lines 9-
16), then gpu_fn is invoked (line 15). However, this kernel
implementation operates on GPU memory. Therefore, a local
copy of all input and output parameters (in_pars_d and
out_pars_d) must be created (lines 9-13). For each parameter,
the mam->get function returns the pointer to that copy (and, if
necessary, allocates the corresponding memory on GPU). The last
parameter of the mam->get call specifies whether the GPU must
have an up-to-date copy of the data, which is necessary only for
the input parameters. After kernel execution, the output
parameters are marked as residing on the GPU (line 16). Again,
this operation does not imply any data transfer.

4.3 Memory Access Handler
The goal of the memory access handler module is to orchestrate
data transfers and synchronizations between CPU and GPU
memory. In order to do so, it maintains a mapping between CPU
and GPU memory regions. In particular, GPU global memory is
seen as a set of non overlapping data blocks, each of them
corresponding to a CPU data block. The mapping is stored in the
data block list, a linked list of data_block_t structures, as
represented below.

typedef enum {SYNCED,ON_CPU,ON_GPU} sync_t;

typedef struct {

void *cpu_addr;
void *gpu_addr;
size_t size;
sync_t sync;
time_t timestamp;

}data_block_t;

Each data block has a CPU address cpu_addr, a GPU
address gpu_addr, a size expressed in bytes, a
synchronization status (sync) and a timestamp indicating the
last access to the block. The synchronization status indicates
whether the content of CPU and GPU blocks is synchronized
(SYNCED) or whether the up-to-date copy of the data resides in
CPU memory/GPU memory (ON_CPU/ON_GPU). Note that,
since the application runs on the CPU and the runtime operates at
the granularity of the function call, the memory access module

allocates GPU memory (and updates the data block list) only
when the runtime invokes the GPU implementation of an
intercepted function.

The memory access handler offers primitives that are invoked
by the runtime. The bulk of the CPU-GPU memory mapping’s
handling is performed within the get primitive, which is invoked
by the runtime on all the parameters of a GPU kernel call.

void *get(void *cpu_addr, size_t size, bool
update) throw Exception

Given a CPU memory block, get returns the pointer to the
corresponding GPU memory block, and throws an exception if the
block does not exist and cannot be allocated or transferred. If the
parameter update is set to true, then the content of the GPU
memory block must be up-to-date. This is typically valid when get
is invoked on an input parameter of a function call, but is not
required when this routine is called on an output parameter. For
NVIDIA’s GPUs, get uses cudaMalloc and cudaMemcopy [8]
to perform memory allocations and data transfers.

When get is invoked, one of the following situations can
occur (Figure 2). First, the required data block does not reside in
GPU memory. In this case, a GPU memory allocation is performed,
and a new entry is added to the data block list. The memory
allocation is followed by a data transfer (from CPU to GPU) only if

C=0xE0000700
G=0x54000000

size = 256 B
SYNCED

C=0xE0000000
G=0x55000000

size = 256 B
SYNCED

C=0xE0000000
G=0x55000000

size = 2048 B
SYNCED

C=0xE0000200
G=0x55000300

(a)

result=0x55000300

size = 4096 B
ON_GPU

C=0xE0000000
G=0x55000000

C=0xE0000000
G=0x55000000

(b)

result=0x55000200

size = 256 B
ON_GPU

size = 1024 B
SYNCED

C=0xE0000000
G=0x55000000

size = 256 B
ON_CPU

C=0xE0000500
G=0x55002000

C=0xE0000000
G=0x54000000

(c)

result=0x54000200

Data block list beforeget() Data block list after get()

size = 4096 B
ON_GPU

size = 2560 B
SYNCED

Figure 2: Examples of the outcome of invoking
get(0xE0000200, 2048B, true) in different situations: (a) the
requested data block is not yet allocated; (b) the requested
data block is already present in GPU memory and its content
is up-to-date; (c) the requested data block overlaps with
several data blocks previously allocated. In all cases, we show
the content of the data block list before (left hand side) and
after (right hand side) the get’s invocation, as well as the
result of the operation (C=cpu_addr, G=gpu_addr) and the
returned data block (highlighted in dark grey).

86

the update parameter of the get call is set to true. Second, the
required data block already resides in GPU memory (possibly as
part of a larger block). In this case, no memory allocation is
required, and the content of the data block list is used to return the
proper GPU address. A data transfer (from CPU to GPU) is
performed only if the update parameter of the get call is set to
true and the sync attribute of the block is equal to ON_CPU. In
fact, no data transfer is needed if the GPU has already an up-to-date
copy of the data. Finally, the requested data block – say BREQ -
spans multiple existing blocks Bi and possibly extends beyond them.
In this case, it is necessary to allocate a new data block BNEW which
covers BREQ and all the Bi. Each Bi can then be de-allocated and
removed from the data block list. To understand why, consider that
GPU kernels are a black box to the runtime, and that their
parameters must point to contiguous memory regions. Again, the
data transfer of block BNEW from CPU to GPU is required only if the
update parameter of the get call is set to true. However, if some
Bi have attribute sync equal to ON_GPU, the portion of BNEW
overlapping them must be restored from GPU memory before their
de-allocation. In Figure 2 (c) the following sequence of operations is
assumed: first, block (cpu_addr=0xE0000700, size=256) is
copied from GPU to CPU; second, all three blocks on the left hand
side are de-allocated and removed from the data block list; finally,
block (cpu_addr=0xE0000000, size=2560) is allocated and
copied from CPU to GPU.

GPU kernel execution only affects GPU memory. The runtime
does not enforce any GPU to CPU memory transfer after the
invocation of a GPU kernel. Data consistency is ensured by
invoking set on the output parameters of the GPU kernel call.

void set(void *cpu_addr) throw Exception

Given a CPU address, this routine sets the sync attribute of
the corresponding data block to ON_GPU. An exception is thrown if
such block cannot be found in the data block list.

When a kernel is invoked on CPU, the runtime must ensure
that the CPU memory has an up-to-date copy of all input
parameters. This is done with sync:

void sync(void *cpu_addr, size_t size) throw
Exception

This function checks whether the data block list has one or
more blocks Bi containing addresses in the range [cpu_addr,
cpu_addr+size] and having attribute sync equal to ON_GPU.
In this case, blocks Bi are copied to the CPU (and their attribute
sync is set to SYNCED). Note that no action is required if the given
address range is not mapped to GPU memory. An error during data
transfer will cause an exception to be thrown.

After execution of a CPU kernel call, output parameters must
be marked as residing on the CPU memory. This is accomplished by
calling the set_cpu function.

void set_cpu(void *cpu_addr, size_t size)

This function sets the sync attribute of data blocks containing
the given address range to ON_CPU. Again, no action is required if
the data block list contains no such blocks.

As mentioned earlier, the eval_loc primitive in the function
call handling module must obtain from the memory access module
information about the location of the input parameters. This is
achieved through the location function.

sync_t location(void *cpu_addr,size_t size)

location returns ON_GPU if the given address range belongs to
a block B in the data block list, and the attribute sync of B is not
equal to ON_CPU. In all other cases, ON_CPU is returned. Note
that the goal of this function is to report whether invoking the
get operation on the given address range would cause any GPU
memory allocation and/or data transfer. This holds whenever
location returns ON_CPU.

Finally, the memory access module provides a free
primitive.

void free (void *cpu_addr, size_t size) throw
Exception

free eliminates from the data block list all entries
containing addresses from the given address range, and frees the
corresponding GPU memory. This function is invoked in two
circumstances: when the application de-allocates data, and when
GPU memory runs full. In the latter case, the runtime uses the
timestamp field in the data_block_t structure to determine
the least recently used blocks. “Dirty” blocks are copied back to
CPU before GPU de-allocation.

When running legacy applications, accesses performed
outside intercepted function calls to address ranges mapped on
GPU can originate data inconsistency problems. In the
experiments presented in this work, we performed source code
inspection and determined all accesses to variables which could
potentially be modified by the intercepted function calls. We then
modified the application by adding a call to sync before every
memory read, and to set_cpu after every memory write to these
variables. In [7] we describe operating system modifications to
avoid this manual operation. The idea is to mark pages mapped to
GPU as invalid, and to modify the page fault handler so that it
will interact with our runtime and automatically call the proper
function whenever a page fault is detected. In particular, handling
will be performed within the runtime if the page fault involves a
page mapped to GPU, whereas the page fault handler will resume
its normal operation otherwise.

4.4 Additional Considerations
The runtime can be extended to support multiple GPUs or other
devices connected to the CPU through the PCI-bus and having a
local address space (e.g. FPGA-based accelerators). The
extensions, which primarily involve the memory access module,
depend on whether the design allows the same data to reside at
the same time on multiple devices. The interested reader can find
more discussion on this aspect in [7].

5. EXPERIMENTAL EVALUATION
In this section, we present some experimental results.

5.1 Methodology
We run our experiments on a heterogeneous workstation
consisting of an Intel Xeon quad-core CPU and an NVIDIA Tesla
C870 GPU. Table 2 shows the details of the architecture. As
workloads, we used two real applications – K-means and SSI
classification – as well as two synthetic applications consisting of
various combinations of kernels, as summarized in Table 3.

The first application consists of two kernels, Sort (quick sort
algorithm) and Reduce. Sort is implemented on the CPU using
Intel TBB while Reduce is implemented using pthreads (in both
cases, four threads are used). Both are implemented on the GPU

87

using CUDA 2.3. The GPU version of Reduce is from CUDA
SDK [31].

K-means is the well-known clustering algorithm used in
image segmentation [32]. We use Lloyd’s algorithm [33] to select
k means given n points (e.g., pixels in an image). Starting with an
initial value for the k means, the algorithm proceeds iteratively.
Each iteration consists of three parallelizable kernels that we call
K1, K2 and K3. K1 calculates the Euclidean distance between the
n points and the current k means. K2 picks the closest mean for
each point, and K3 updates the values of the k means by averaging
all points closest to each mean. Since K3 could only be
parallelized into k threads, and k is small (under 64), it was
always faster on the CPU. We implemented K1 and K2 on both
the CPU and GPU using Intel’s MKL [26] and CUDA 2.3
respectively.

The third application consists of two kernels, SpMV and
topk_rank. SpMV [31] performs sparse matrix-vector
multiplication. For topk_rank, the same kernel used in the
example of Section 3, we use our own implementation on both
CPU (using pthreads) and GPU (using CUDA).

Finally, SSI classification uses two kernels (dense matrix
multiplication and topk_rank) and has been described in Section
3.

For all applications, we measure wall-clock processing as
well as data transfer times. In the experiments that use our data-
aware runtime system, we also accounted for the overhead due to
call interception and runtime scheduling.

5.2 Results
In this section, we report our findings using our data-aware
runtime for the above applications.

5.2.1 Sort and Reduce
Figure 3 shows the performance of running Sort and Reduce on
CPU and GPU separately. The GPU performance bars show the
split costs for real processing, memory allocation and data
transfer. We see that Sort on GPU is slightly faster for small data

Table 3: Benchmarks.
Apps Description Input Size
Sort +
Reduce

Synthetic benchmark
with parallel sorting
and parallel reduction
kernels

Data size from 4K
elements to 1024K
elements

K-means Clustering algorithm
used in image
segmentation

1K to 1M pixels
clustered into 32 regions

SpMV+
topk-
rank

Synthetic benchmark
with sparse matrix-
dense vector
multiplication and top
k ranking

Sparse matrices with
100-700K
rows/columns, up to
3.9M non-zeros

SSI Supervised Semantic
Indexing of documents
based on text queries

1.8M documents with
32-96 simultaneous
queries

0

2

4

6

8

10

12

14

16

4K 8K 16K 32K 64K 128K 256K 512K 1024K

GPU->CPU transfer

GPU Sort (Processing)

cudaMalloc + CPU->GPU transfer

M
ill

ise
co

nd
s

Number of elements

0

50

100

150

200

250

300

4K 8K 16K 32K 64K 128K 256K 512K 1024K

CPU Sort

Number of elements

M
ill

ise
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

4K 8K 16K 32K 64K 128K 256K 512K 1024K

CPU Reduce

M
ill

ise
co

nd
s

Number of elements

0

1

2

3

4

5

6

7

8

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Data Transfer

GPU Reduce (Processing)

Number of elements

M
ill

ise
co

nd
s

Sort on GPU Sort on CPU

Reduce on GPU Reduce on CPU

Figure 3: Processing and data transfer time for Sort and Reduce on GPU (left) and CPU (right). The GPU is faster for Sort
while the CPU is faster for Reduce.

Table 2: Experimental setup.

 CPU GPU
Model Intel Xeon E5420 Tesla C870
Cores 4 128
Frequency 2.5 GHz 1.35 GHz
Memory size 12 GB 1.5 GB
Threading API Pthreads, TBB CUDA 2.3
Compiler gcc -O3 nvcc 2.3 –O3

88

sizes (4K elements) and much faster as the data size increases. For
Reduce, the CPU multithreaded version is faster than the GPU
implementation.

When running an application consisting of multiple kernels,
a data-agnostic scheduler assigns each kernel to the computational
unit that offers the best performance, in this case the GPU for Sort
and the CPU for Reduce. However, being unaware of data
location, such a scheduler leads to data transfers before and after
each GPU kernel invocation. The data-agnostic runtime must do
this since it is unaware of which kernel may be invoked next, as is
the case for legacy code. As can be observed, the transfer time is
not trivial for large data sizes. Our runtime keeps track of data
location, delays data transfers and takes the cost of data transfers
into consideration when performing online scheduling decisions.

Figure 4 compares the performance of a data agnostic
runtime with our data-aware runtime, where the data-agnostic
runtime schedules kernels on the processor that is estimated to be
faster, regardless of data location. In this case, a data-agnostic
scheduler would always pick the GPU for Sort and CPU for
Reduce. Our data-aware runtime schedules both kernels on the

CPU when data size is small (4K elements), but picks the GPU
for Sort and CPU for Reduce for intermediate data sizes (8K-
16K), and runs both kernels on GPU for larger data. While there
is a small performance loss due to our runtime overhead (under
2%) for small data sizes, we achieve around 20% performance
improvement when these kernels work with 256K or more
elements.

5.2.2 K-means
We recall that K-means has two candidate kernels K1 and K2.
The third kernel K3 is always faster on the CPU, and with
negligible data transfer into and out of K3, it is always scheduled
on the CPU. We segmented random images of sizes ranging from
1K pixels to 1M pixels into 32 clusters (i.e., k = 32). We found
that for small images (specifically 1K and 4K pixels), the CPU
was faster than the GPU for kernel K1 (it used MKL sgemm for
most of its Euclidean distance computation), but the GPU was
faster (with its CUBLAS sgemm implementation [27]) for larger
images. Our custom implementation of Kernel K2 was faster on
the GPU for images 4K or larger. Figure 5 shows the performance
of K-means with data-agnostic and data-aware runtimes for small
images and large images. Labels above the bars indicate the
schedule for the two kernels. While the two runtimes schedule the
kernels the same way for 16K and larger images, the performance
improvement with the data-aware runtime is due to the
optimization of data transfers. Specifically, after kernel K1 runs
on the GPU, the runtime postpones the data transfer back to the
CPU until K2 has been scheduled. From the figure, we see the
data-aware runtime improves performance by up to 25% for both
large and small data sets. Figure 6 shows the performance profile
of the 3 different kernels in K-means. The data-aware runtime
profile is shown on the left, and the data-agnostic on the right. We
see that the data transfer portion of the profile is significantly
reduced by the data-aware runtime resulting in the 25%
performance improvement.

5.2.3 SpMV and topk_rank
Sparse matrix (SpMV) performance on the CPU and GPU depends
on the number of non-zeros in the matrix. For our experiments,

0

100

200

300

400

500

600

1024 4096 16384

m
ill

ise
co

nd
s

Number of Points to Cluster

Data-agnostic
Data-aware

0

5000

10000

15000

20000

25000

30000

35000

40000

65536 262144 1048576

m
ill

ise
co

nd
s

Number of Points to Cluster

Data-agnostic
Data-aware

SMALL DATA SIZE LARGE DATA SIZE

CP
U,

 C
PU

CP
U,

 C
PU

CP
U,

 G
PU

CP
U,

 C
PU

GP
U,

 G
PU

GP
U,

 G
PU

22%
25%

Figure 5: Data-agnostic and Data-aware scheduling for K-
means with small (left) and large data sizes (right). Data-
aware scheduling makes the application 25% faster than a
data-agnostic runtime.

0

2

4

6

8

10

12

14

16

18

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Data Treansfer Agnostic
Data-Aware

GP
U,

 CP
U

CP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U GP

U,
 CP

U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 CP
U

GP
U,

 G
PU

GP
U,

 G
PU GP

U,
 G

PU

GP
U,

 G
PU

GP
U,

 G
PU

GP
U,

 G
PU

M
ill

ise
co

nd
s

Number of elements

Figure 4: Execution time for Sort and Reduce. The labels on
the bars indicate where the kernels were scheduled.

65536 262144 1048576
0

5000

10000

15000

20000

25000

30000

35000

65536 262144 1048576

m
ill

ise
on

ds

Data Transfer

Kernel 3

Kernel 2

Kernel 1

DATA AWARE RUNTIME DATA AGNOSTIC RUNTIME
Number of points to cluster

Figure 6: Performance profile of K-means, and data transfer
time for data-agnostic and data-ware runtimes.

89

we use three matrices (ranging in size from 100 to nearly 700K
rows/columns, and up to 3.9M non-zeros, obtained from [36])
each multiplied by 64 and 128 dense vectors, as shown in Table 4.
For each case, we multiply a given sparse matrix with the vectors,
and select the top 64 elements of each result vector. The data-
agnostic runtime selects a schedule solely based on the estimated
performance of the kernel, while our data-aware runtime selects
the schedule based on estimated performance as well as the
estimated data transfer overhead. For this benchmark, although
our runtime chooses the same schedule as the data-agnostic
runtime, it has better performance (for SparseM2) due to the fact
that it defers data transfer and figures out it can avoid them. For
SparseM2, once the SpMV has executed on the GPU, the data is
not transferred back to the CPU until the next kernel is
encountered a decision made regarding its schedule. We see
improvements of up to 21% for SparseM2, but do not
significantly affect the performance of the other matrices (our
runtime overhead is under 2%).

5.2.4 Supervised Semantic Indexing (SSI)
We ran SSI with 32, 64 and 96 parallel queries, semantically
searching the Wikipedia database consisting of 1.8M documents.
SSI has two compute-intensive kernels: matrix multiplication
sgemm and topk_rank. Table 5 shows the schedules and overall
SSI performance in milliseconds per query for each case under a
data-agnostic and our data-aware runtime. We see a performance
improvement of 21.7% for 96 queries, of 4.4% for 64 queries and
a negligible degradation for the small data set.

6. CONCLUSION, FUTURE DIRECTIONS
We presented a runtime for heterogeneous platforms consisting of
one or more multi-core CPUs coupled with one or more many-
core GPUs via a non-coherent interconnect. The CPU and GPU
do not have shared memory. The runtime provides a unified
memory view to the programmer, and aims at enabling legacy
programs to run seamlessly on the heterogeneous platform with
higher performance.

The key contribution is making the runtime data-aware. The
proposed runtime schedules computations as well as data transfers
taking into account the estimated performance and the time
required to move data. In doing so, it may schedule a kernel on

the slower processor simply because of data proximity. It also
defers transferring data until necessary; thus, a kernel that runs on
the GPU will not have its data transferred back to the CPU even
though the runtime is unaware of when the data will be used in
future. Rather, when another kernel requires those data, the
runtime decides if they should be moved to a different processor,
or the kernel should be scheduled on the processor hosting the
data.

We implemented the data-aware runtime and evaluated it on
a heterogeneous platform with a quad-core x86 CPU and an
NVIDIA Tesla C870 (128-core) GPU. For synthetic as well as
real applications, our runtime shows a performance improvement
of up to 25% when compared to a runtime that schedules in a
data-agnostic manner.

REFERENCES
[1] K. Fatahalian et al, “Sequoia: Programming the memory

hierarchy,” in Proc. of the 2006 ACM/IEEE Conference on
Supercomputing, Tampa, FL.

[2] T. J. Knight et al, “Compilation for Explicitly Managed
Memory Hierarchies,” in Proc. of PPoPP 2007, San Jose,
CA.G.

[3] Diamos and S. Yalamanchili, “Harmony: an execution model
and runtime for heterogeneous many core systems,” in Proc.
of HPDC 2008, New York, NY.

[4] C. Luk, S. Hong and H. Kim, “Qilin: Exploiting Parallelism
on Heterogeneous Multiprocessors with Adaptive Mapping,”
in Proc. of MICRO 2009, New York, NY.

[5] B. Saha et al, “Programming model for a heterogeneous x86
platform,” in Proc. of PLDI 2009, Dublin, Ireland.

[6] I. Gelado et al, “CUBA: An Architecture for Efficient
CPU/Co-processor Data Communication,” in Proc. of
ICS’08, Island of Kos, Greece.

[7] M. Becchi, S. Cadambi and S. T. Chakradhar, “Enabling
Legacy Applications on Heterogeneous Platforms,” in Proc.
of HotPar 2010, Berkeley, CA, June 2010.

[8] CUDA documentation:
http://www.nvidia.com/object/cuda_develop.html.

Table 5: Results for SSI with data-aware scheduling for 1.8M document database.

Parallel Queries Data-Agnostic Runtime Data-aware Runtime
 Schedule Performance Schedule Performance

32 GPU, CPU 7.91 ms/query GPU, CPU 7.91 ms/query
64 GPU, CPU 7.85 ms/query GPU, GPU 7.51 ms/query
96 GPU, CPU 7.83 ms/query GPU, GPU 6.13 ms/query

Table 4: Results for synthetic application with SpMV and topk_rank kernels.

Data-Agnostic Runtime Data-aware Runtime Matrix Rows/Cols Non-zeros # Vectors
Schedule Time (ms) Schedule Time (ms)

64 CPU, CPU 1.02 CPU, CPU 1.02 SparseM1 100 460
128 CPU, GPU 1.75 CPU, GPU 1.75
64 GPU, GPU 94.51 GPU, GPU 74.46 SparseM2 36057 341088

128 GPU, GPU 186.25 GPU, GPU 147.29
64 CPU, GPU 1540.15 CPU, GPU 1540.15 SparseM3 682862 3871773

128 CPU, GPU 3091.81 CPU, GPU 3091.81

90

[9] http://www.supermicro.com/products/nfo/files/GPU/GPU_W
hite_Paper.pdf: “Shattering the 1U Server Performance
Record”.

[10] AMD, AMD Stream SDK User Guide v 2.0, 2009.
[11] Intel, Intel Threading Building Blocks 2.2:

http://www.threadingbuildingblocks.org.
[12] A. Ghuloum et al, “Future-Proof Data Parallel Algorithms

and Software on Intel Multi-Core Architecture”, Intel
Technology Journal 11, 4, 333-348, Nov 2007.

[13] D. Tarditi, S. Puri and J. Oglesby, “Accelerator: Using Data
Parallelism to Program GPUs for General-Purpose Uses,” in
Proc. of the 2006 ASPLOS, October 2006.

[14] Intel RapidMind, http://software.intel.com/en-
us/articles/rapidmind.

[15] Peakstream, “Peakstream Stream Platform API C++
Programming Guide v 1.0”, May 2007.

[16] PGI, PGI Accelerator Compilers,
http://www.pgroup.com/resources/accel.htm.

[17] CAPS, HMPP Workbench, http://www.caps-
entreprise.com/hmpp.html.

[18] HPC Project, Par4All, http://www.par4all.org.
[19] J. A. Stratton, S. S. Stone and W-m. W. Hwu, “MCUDA:

An Efficient Implementation of CUDA Kernels from Multi-
Core CPUs,” in Proc. of the 2008 Workshop on Languages
and Compilers for Parallel Computing, 2008.

[20] G. Diamos et al, “GPUocelot – A binary Translator
Framework for GPGPU”
http://code.google.com/p/gpuocelot.

[21] S.-W. Liao et al, “Data and Computation Transformations
for Brook Streaming Applications on Multiprocessors,” in
Proc. of the 4th Conference on CGO, March 2006.

[22] A. Munshi, “OpenCL Parallel Computing on the GPU and
CPU”, in ACM SIGGRAPH 2008.

[23] K. O'Brien et al, “Supporting OpenMP on Cell,” in
International Journal on Parallel Programming, 36, 289—
311, 2008.

[24] M. D. Linderman et al, “Merge: A Programming Model for
Heterogeneous Multi-core Systems,” in Proc. of the 2008
ASPLOS, March 2008.

[25] B. Bai et al, “Learning to Rank with (a lot of) word
features,” in Special Issue: Learning to Rank for Information
Retrieval. Information Retrieval. 2009.

[26] Intel MKL: http://software.intel.com/en-us/intel-mkl.
[27] http://developer.download.nvidia.com/compute/cuda/1_0/CU

BLAS_Library_1.0.pdf.
[28] T. Kosar, “A New Paradigm in Data Intensive Computing:

Stork and the Data-Aware Schedulers,” in Proc. of
Challenges of Large Applications in Distributed
Environments, 2006.

[29] J. Bent et al, “Coordination of Data Movement with
Computation Scheduling on a Cluster,” in Proceedings of
Challenges of Large Applications in Distributed
Environments, 2005.

[30] G. Khanna, “A Data-Locality Aware Mapping and
Scheduling Framework for Data-Intensive Computing”, MS
Thesis, Dept. of Computer Science and Engineering, The
Ohio State University, 2008.

[31] Nvidia, “CUDA SDK Code examples”,
http://www.nvidia.com/object/cuda_get.html.

[32] J. B. MacQueen, “Some methods for classification and
analysis of multivariate observation,” in Proc. of the
Berkeley Symposium on Math. Stat. and Prob., pp 281–297.

[33] S.P. Lloyd, "Least squares quantization in PCM," IEEE
Transactions on Information Theory 28 (2): pp 129–137.

[34] C. Augonnet and R. Namyst, “A unified runtime system for
heterogeneous multicore architectures,” in Proc. of HPPC'08,
Las Palmas de Gran Canaria, Spain, August 2008.

[35] C. Augonnet et al, “StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures,“ in
Proc. of the 15th International Euro-Par Conference, Delft,
The Netherlands, August 2009.

[36] http://www.cise.ufl.edu/research/sparse/matrices/

91

